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where 

Ask = F*(h[ q ] - ' ) F ( h [  Ck] -~) 

x exp [2~'ih. (u s --Uk)]. (A2) 

Equation (A1) can be transformed either with 
respect to the reciprocal-space vectors h, resulting in 
a transform with vectors ([ C s ] - [ Ck ])t, or with respect 
to the reciprocal-space cross vectors h([Cs]-[Ck]), 
giving rise to a transform with vectors t. The main 
advantage of the latter lies in the ease of combination 
of different symmetry elements. A Fourier synthesis 
with modified coefficients of this sort has been 
described previously by Rius & Miravitlles (1986). 

The translation and packing functions are calcu- 
lated as follows. 

(i) Structure factors are calculated for the correctly 
oriented molecule, placed in a triclinic unit cell of 
identical lattice constants as the target cell; this avoids 
interpolation in the ensuing steps. 

(ii) The structure factors are sorted according to 
resolution such that symmetry-related reflections are 
grouped together. 

(iii) For a given vector b in the asymmetric unit, 
the structure factors are found for all symmetry- 
related vectors h[Cs] -I. The complex coefficients (A2) 
are evaluated for each symmetry element [using (3) 
and (8) for the packing and translation functions 
respectively] and assigned to cross vectors b([C s ] -  
[ck]). 

(iv) The resulting difference vector coefficients are 
added together (from all symmetry elements for the 
translation function, pairwise for the overlap func- 
tion) and Fourier transformed. The packing-function 
coefficients must be weighted by an artificial B factor 
to dampen spurious ripples, resulting in a smooth 

function (see Fig. 2); this is necessary for the combi- 
nation with the translation function as outlined in (6). 

(v) The packing function is evaluated according 
to (4) and (5), using an appropriate value for K. 

(vi) Modified translation functions are calculated 
according to (6). 

The current translation-function package requires 
- 4  min CPU on a VAX 8550 from atomic coordinates 
to translation function for the example given here 
(29 823 structure factors between 8 and 3-5/~, 6 sym- 
metry operations); the packing function currently 
takes <20 min CPU for the same problem (15 cross 
vectors), although the use of external programs, with 
consequent multiple file conversions, represents a 
considerable fraction of retrievable computation time. 

Programs for the packing and translation functions 
described here are available on request. 
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Abstract 

Since Sayre's equation is the basis of some direct- 
methods procedures, the applicability of Sayre's 
equation has been tested in various circumstances. 
When a structure contains a heavy atom, it is found 
that Sayre's equation does not hold well, which is 

0108-7673/91/050526-08503.00 

expected since the condition of equal resolved atoms 
does not apply. However, what is not expected is that 
with a heavy atom present the equation actually holds 
better at low resolution than at high resolution. The 
cause of this apparent anomaly is discussed and it is 
shown that there exists a modified Sayre's equation 
which holds far better in the presence of one kind of 
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heavy atom in a structure. While this modified 
equation is difficult to use, it is possible that it may 
find application if the full power of modern computer 
technology is utilized. 

Introduction 
Sayre (1952) derived an equation which gives 
relationships between structure factors for structures 
containing equal resolved atoms in the form 

F(h) = [ f ( h ) / g ( h ) ] G ( h )  

=[f(h)/g(h)V]~, F ( k ) F ( h -  k), (1) 
k 

where f (h)  and g(h) are the scattering factors of the 
true and squared-electron-density atoms, respec- 
tively, G(h) is the structure factor for the squared 
structure and V is the volume of the unit cell. The 
equation is based on the following idea: if the peaks 
in the electron-density map are equal and well re- 
solved then the squared electron density is very 
similar to the original density. The only difference is 
in the shape of the peaks which is compensated by 
the factor f(h)/g(h). 

Recently introduced direct phase-determining 
methods are based on Sayre's equation. One such 
method involves the Sayre-equation tangent formula 
(SETF) (Debaerdemaeker,  Tate & Woolfson, 1985, 
1988) which attempts to minimize the least-squares 
residual for the Sayre equation. Sayre's equation for 
normalized structure factors is written as 

E(h)=[f/g(h)V]~, E ( k ) E ( h -  k). (2) 
k 

For normalized structure factors, f is independent of 
h and equals N -~/2 for an equal-atom structure where 
N is the number of atoms in the unit cell. The scatter- 
ing factor for squared atoms, g(h), is equivalent to 
the self-convolution of the scattering factor for the 
true atoms, thus 

g(h) = V -~ ~ f ( k ) f ( h - k ) .  (3) 
k 

Since f (h)  is constant (= N-~/2), g(h) equals (VN) -~ 
times the number of the terms in the summation of 
(3), which is given by the function 

(Tr/12) V{4smax+S(h)}{2Smax-s(h)} 2, (4) 

where s(h) is the length of the reciprocal-lattice vec- 
tor, h, and Smax is the maximum value of s(h) over 
all the h's. The formula (4), except for the factor V, 
represents the overlapped volume in reciprocal space 
of the two spheres with radius s . . . .  separated by 
s(h). If we define the structure factor for the squared 
structure multiplied by V/g(h) by 

G'(h)=[g(h)]-l~, E ( k ) E ( h -  k), (5) 
k 

then the least-squares residual for the Sayre equation 
is given by 

= E [ E ( h ) -  KG'(h)I2/E I E(h)l 2, (6) R 
h / h  

where K is a scale factor. If all possible terms were 
included in the summation of the Sayre equation then 
K would equal f~ V. However, in the usual practical 
applications of the equation only a subset of larger 
E's  is included. In this case K must also compensate 
for the loss of terms in the summation and it can be 
shown that the value of K giving the lowest value of 
R is 

K=Y~h E(h)*a'(h)/~h la'(h)12" (7) 

A plausible phase set is expected to make (6) a 
minimum. From this point of view, for all l, 

OR/O~(I) :0. 
The application of this condition to (6) gives 

Im {t(I)}-(2T/3Q) Im {q(i)} 
tan ~(! ) :  (8) 

Re {t(I)}-(2T/3Q) Re {q(l)}' 

where Im and Re indicate imaginary and real parts 
of complex quantities, 

t(l) = ~ [1/g( l )  + 1/g(h) + 1/g(l-h)]E(h)E(I-h), 
h 

q(l) =~  E(l-h)[1/g(h)2]~, E ( k ) E ( h - k ) ,  
h k 

T=~ E(l)*t( i )  

and 

Q=Y E(I)*q(I)--Y~IG'(h)I 2. 
I h 

Formula (8) is the previously mentioned Sayre- 
equation tangent formula (SETF); Debaerdemaeker,  
Tate & Woolfson (1985, 1988) have shown that it is 
much more effective than the conventional tangent 
formula in direct-methods applications. For example, 
it was demonstrated by Woolfson & Yao (1990) that 
it would be effective in solving a small protein, avian 
pancreatic polypeptide (details given later), with 
more than 300 atoms in the asymmetric un i t -  
although it should be said that this structure had data 
of unusually good quality and resolution. 

Since the SETF attempts to develop phases so as 
to make the residual for a system of Sayre equations 
a minimum, it is interesting to examine the accuracy 
of the Sayre equation under various conditions. If in 
some circumstances the equation does not hold well 
then it may indicate that this method may not be 
applicable in such a case. What we do here is to report 
on tests of the Sayre equation at low resolution and 
also for structures containing heavy atoms. 
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An apparent ly  a n o m a l o u s  result  

The behaviour of Sayre's equation has been tested 
on the structure of the 36 amino acid avian pancreatic 
polypeptide (App) (Glover, Haneef, Pitts, Wood, 
Moss, Tickle & Blundell, 1983). The molecule forms 
symmetrical dimers linked through zinc atoms in the 
crystal lattice. The crystal has space group C2 with 
dimensions a = 34.18, b = 32.92, c = 28-45 A, and/3 = 
105-26 ° . The asymmetric unit contains 301 non- 
hydrogen atoms belonging to the polypeptide, a zinc 
atom and 80 H20 molecules. 

The procedure of the test is as follows: 
(1) Calculate the normalized structure magnitudes 

with the program MULTAN from the observed F's. 
(2) Calculate the E map. True phases calculated 

from known atomic coordinates are used. 
(3) Square the E map. 
(4) Derive the structure factors by Fourier trans- 

formation of the squared E map and then divide 
them by g(h) in order to get structure factors propor- 
tional to G'(h) in (5). 

(5) Compare E(h)'s and G'(h)'s. The absolute 
values of E(h) and G'(h) can be compared by means 
of the residual, 

R = ~h {IE(h)l- K'I G'(h)I}~/~ I E(h)l ~. (9) 

For phases the weighted mean error is calculated as 

IE(h)l I O'(h)l I ~  (h) - ~o.(h)l 
( A ~ ) E G  ' - -  h 

7. I E ( h ) l l G ' ( h ) l  , (10) 
h 

where ~E(h), ~o,(h) are phases of E(h) and G'(h), 
respectively, and (A~)Eo, is the phase error weighted 
with the product of the absolute values of E(h) and 
G'(h). A suitable value of K',  in (9), is obtained by 

g'= E IE(h)llO'(h)l/~ (ll) 

The test has been done at various resolutions. The 
result of this analysis is plotted in Fig. 1 with circles. 

A surprising result was obtained. The cumulative 
R factor and the weighted mean phase error are 
smallest at the lowest resolution and their values 
increase with increasing resolution. We shall discuss 
later the reason for this result and its implications for 
the use of Sayre's equation. 

The effect  o f  heavy atoms 

In order to confirm that the apparently anomalous 
effect was not due to experimental error in measuring 
structure factors, Sayre's equation was tested on the 
structure factors calculated from the known atomic 
coordinates of App ignoring both water molecules 

and hydrogen atoms. However, the anomaly 
remained; the R factor and weighted mean phase 
error were smallest at lowest resolution although a 
difference from the result with the observed magni- 
tudes is that the R factor and phase error improved 
beyond 1-29 ,~ resolution. 

Eventually it was found that the cause of the 
anomaly was the presence of the zinc atoms. When 
Sayre's equation was tested on calculated structure 
factors for App with zinc atoms replaced by carbon 
atoms, the anomaly disappeared. A comparison of 
the results with and without zinc is shown in Fig. 2. 
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Fig. 1. R factors and phase errors of Sayre's equation and MSE 
with observed structure magnitudes of App. Circles are the 
results of Sayre's equation. Triangles are the results of MSE. 
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Without zinc, values of R factor and phase error 
generally decreased with increasing resolution as 
expected although there are some fluctuations and 
small increases persisted at the very highest resol- 
utions. At resolution 1.0 ~ the R factor has a small 
value of 3.8%. 

Actually, since Sayre's equation is strictly valid 
only for structures containing equal atoms, the R 
factor and mean phase error for a structure containing 
heavy atoms would be expected to be non-zero at any 
resolution, high or low. 

R factor 
No. of reflexions 
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-.-' 10 

8 

6 

~v~ao ~ v 

. Sayre with Zn 

+ Sayre without Zn 

i " ! I i I ----I 
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20 
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No. of ref lexions  

* Sayre with Zn 
+ Sayre without Zn 

I I I I 1 I 

1.0 1.5 2.0 2.5 3.0 3.5 

Resolution(.~] 

Fig. 2. R factors  and  phase  errors  o f  Sayre 's  equa t ion  and  MSE 
with ca lcula ted  structure magn i tudes  of  App.  Circles are the 
results o f  Sayre ' s  equat ion.  Crosses  are the results o f  Sayre 's  
equat ion  on App  without  Zn. Triangles  are the results o f  MSE. 

The modified Sayre's equation 

Woolfson (1958) suggested the use of an equation 
which would be valid for structures containing two 
kinds of atoms. The form of the equation is 

E(h)  = A(h)  V - ' E  E ( k ) E ( h -  k) 
k 

+ B(h) V - 2 ~  Y~ E(k)E(l)E(h-k-l) 
k I 

= A (h )G(h )  + B (h )H(h ) ,  (12) 

where A(h) and B(h) are functions of the reciprocal- 
lattice vector, h, and G(h) and H(h) are the structure 
factors for the squared and cubed E maps. In the 
original paper, F(h)'s were used, but here we shall 
use normalized structure factors, E(h)'s, and we shall 
call (12) the modified Sayre equation (MSE). 

In order to use the MSE, we must derive the func- 
tions A(h) and B(h). We denote the structure factors 
for squared and cubed E maps by E ~q and E c", 
respectively. They are written as 

Esq=[KSq/g(h) V]~ E ( k ) E ( h -  k) (13a) 
It 

and 

ECU(h)=[KCU/h(h)V]~ E(k )E( l )E(h-k - l ) ,  
It l (13b) 

where g(h) and h(h) are the functions which depend 
on the numbers of terms in the summations and K sq 

and K cu are the scaling constants. The quantity g(h) 
is proportional to (4) while h(h) is given as 

h(h)= V-2~,~, f (k) f ( l ) f (h-k-I)  
It I 

: V- rE  g ( k ) f ( h -  k) 
It 

V-l ~. ( Tr/12N){4Smax + s(k)} 
k 

× {2Smax-s(k)}2N-l/26(h-k), 

where 6(h) is the 6 function which has value 1 at the 
reciprocal-lattice points and zero elsewhere. This 
expression is replaced by an equivalent integration 
to give 

h(h) "---- j'j'j" ( I7"/12N3/2){4Smax + s(k)} 

X { 2 S m a x - -  s ( k ) }  2 d V *  

= (7r2/1260N 3/2) 

x { 1050S6m,x- 525SSm,xs(h) - 315S4axs(h) 2 

+70saaxs(h)?+63S~xs(h)4-s(h)6}, (14) 

where V* is the reciprocal unit volume. The range of 
the integration is over the overlapped volume of two 
reciprocal spheres with radius Sm,x and the distance 
between their centres is s(h). Now we can calculate 
the normalized structure factors for the squared and 
cubed structures with (13a) and (13b). 
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We have considered the case of structures which 
contain two kinds of atoms. Hence we have two 
scattering factors denoted by fL for light atoms and 
fH for heavy atoms. The MSE is derived from the 
Fourier transform of 

p(u)=A(h)p(u)2+B(h)p(u) 3, (15) 

where p(u) is the electron density at position u. Then 
the scattering factors are described as linear combina- 
tions of the scattering factors for squared and cubed 
structures, (f)sq and (f)¢~, as 

and 

A = a ( A )  sq+ b(A)  cu 

f H = a ( f H ) S q + b ( f H )  c~. 

(16a) 

(16b) 

For ideal point atoms, the scattering factors would 
be given by 

A = ZL, (A)  sq ~-~" Z 2 ,  (A)  cu= z 3 ,  
(17) 

TH = ZH, (TH)sq ~- Z 2 " (TH)cu = Z 3 " 

Note that we usually consider carbon, nitrogen and 
oxygen atoms as light atoms and we compensate for 
this by giving average values of the scattering factors 
and their powers for light atoms, 

( A ) s q  = ( Z 2 ) ,  (fL)CU = ( Z 3 ) ,  A=(z~), 
where 

N,. ; /  
(zD= E z M 

j = l  

and N£ is the number of light atoms in the unit cell. 
Then (16a) and (16b) are written as 

( Z t _ ) = a ( Z ~ ) + b ( Z ~ )  

and 
Z ,  = a Z ~  + b Z  3 . 

By solving the simultaneous equations for a and b, 
we obtain 

<zL)z ~. - ( z b  
a ( ( z b z .  -(zb)z. '  (18a) 

(z,)z. - ( z b  
b - ( ( Z 2 ) Z  _ ( Z 3 ) ) Z r f  (18b) 

We now write E, E sq and E ¢~ as 

E(h) = cr~ ~/2 (ZL) exp (27rih. rj) 
.= 

+ ZH ~ exp (2"rrih. rj) 
j = l  

{ ESq(h) = o'41/2 (Z~) ~ exp (27rih. %) 
j = !  

N. } 
+ Z ~  Y exp(2 r r ih . r j )  , 

] = !  

N1" 

ECU(h)=tr6 '/2 (Z 3) ~ exp(2 r r ih . r j )  
j = l  

N. } 
+ Z  3 ~ exp (2 r t i h . r j )  , 

j = l  

N .  Z n where or. = ~j = ~ and Nn and Nau a r e  the numbers 
of heavy atoms and all atoms in the unit cell, respec- 
tively. The factors ~r~ -~/2, tr~ ~/2 and o'6 ~/2 ensure that 
each type of E is properly normalized. Now we can 
write the Fourier transform of (15) by applying the 
coefficients a and b, 

o~/2 E (h) = ao'~/2 ESq(h) + bo'~/2 ECU(h) 

o r  

E (h) = a(~/2/o.~/2) ESq(h) + b( cry/2/o'~/2) ECU(h). 

Since we have already obtained the normalized struc- 
ture factors, E sq and E cu, we can now write the MSE 
in its full form as 

E(h) = A(h) V-' E E(k)E(h-  k) 
k 

where 

and 

+ B(h) V-2 Z Z E(k)E(l)E(h-k-I), (19) 
k ! 

(z,3z~-<zb ~/~  K ~ 
A(h)=((Z~)ZH-(Z3))Z. o-~/2 g(h) 

( Z L ) Z . - ( Z b  ~ , / ~  I,: ~° 
B ( h ) = ( ( Z ~ ) Z n - ( Z 3 ) ) Z n  cr~/2 h(h)" 

The MSE can be used as the basis of a new tangent 
formula (Appendix). However, since the quartet con- 
tribution given by the double summation in (A-5) 
requires all possible terms to be included, and not a 
convenient subset as in the Sayre-equation tangent 
formula, no tests of it have yet been made. 

Application of the MSE to App 

The MSE has been applied to the structure of App 
where the structure factors calculated from the known 
atomic coordinates are used. 

The procedure for the calculation is as follows: 
(1) Calculate the E's  from the atomic coordinates, 

assuming ideal point atoms. 
(2) Calculate the E map. 
(3) Square and cube the E map. 
(4) Derive the structure factors G(h) 's  and H(h) ' s  

from the squared and cubed E maps. 
(5) Calculate the right-hand side of the MSE, (19). 

The normalizing factors, K sq and K c', are calculated 
by 

[ 1/g(h)]l E (h) ] I G(h)l 
g s q =  n 

Y [ 1/g(h)2][ G(h)[ 2 
h 
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and 

Y~ [ 1/h (h)]l E (h)l In  (h)l 
gcu__ h 

Y~ [ 1/h(h)2]lH (h)l 2 
h 

(6) Calculate the R factor and phase error. 
The result is plotted with the results of Sayre's 

equation in Fig. 2. We can see that the anomaly has 
now disappeared. The R factor and phase error gen- 
erally decrease their values with increasing resolution. 
In Fig. 2, all three plots have a peak in the range of 
resolution between 1.5 and 1.25/~ in R factor and 
phase error and this range corresponds to that of 
bond lengths between atoms. The plots for the MSE 
have the same characteristics as for Sayre's equation 
on the structure of App 'without' Zn. 

Next, the MSE was tested with observed structure 
magnitudes of App. The result is plotted in Fig. 1. 
While the anomaly persists, the MSE produces much 
lower R factors and phase errors than does Sayre's 
equation in the high-resolution range. 

Discussion 

We have discussed the fact that heavy atoms cause 
the anomaly in values of R factor and phase error of 
Sayre's equation. This fact is not easily understand- 
able if we just consider Sayre's equation alone but if 
we think in terms of the E map then it can be better 
understood. 

We take a simple one-dimensional sample structure 
containing 18 carbon atoms and 2 zinc atoms in a 
unit cell. The result of the application of Sayre's 
equation is given in Table 1 and the E maps and 
squared E maps with number of reflexions = 10, 30 
and 90 are shown in Fig. 3. 

The results in Table 1 show the same character as 
in the three-dimensional case. The R factor and phase 
error have their best values for low resolution. The 
reason for this can be deduced when we see the E 
maps and squared E maps. The zinc-atom peaks are 
not so dominant in the low-resolution E maps; in the 
E map with ten reflexions, the heights of the zinc 
atoms are only three times higher than those of carbon 
atoms but in the squared E map they are nine times 
higher than those of the carbons. The densities of the 
atoms are also widely spread out, so few areas in 
which the density is negative are detected. Although 
the resolution is poor, the E map and the squared E 
map have very similar shapes, which is the reason 
for the good values of the R factor and phase errors. 
The R factor has the worst value with 30 reflexions; 
for this resolution the zinc peaks have become very 
dominant - about five times higher than the peaks of 
carbon atoms - so that in the squared map they are 
about 25 times higher than carbon peaks. In addition 
we see many negative regions in the E map which 
create false peaks in the squared map. Consequently 

Table 1. Application of Sayre' s equation to the sample 
structure (C~8Zn~) 

N u m b e r  o f  
reflexions R fac tor  (%) (/tq~)e~, 

l0 0.4 2.2 
20 6.3 4.4 
30 10.9 7.2 
40 8.3 7.2 
50 8.8 8.4 
60 8.3 9-O 
70 7-9 8.9 
80 8-2 8.9 
90 8.6 8.9 

the E map and squared map are not quite so similar 
in appearance. For the E map with 90 reflexions, the 
zinc-atom peaks become dominant and the negative 
regions give less-significant false peaks in the squared 
map. 

We conclude that there may be difficulties in the 
use of the SETF for structures containing heavy atoms 
although experience with App suggests that one Zn 
atom in the presence of 300 light atoms can be toler- 
ated. Ifa way can be found of efficiently incorporating 
all the terms in the MSE then it may well offer an 
improvement over the SETF. Actually, with the 
availability of hard-wired FFT facilities on computers 
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Fig. 3. E m a p  and  squared  E m a p  o f  the one -d imens iona l  sample  
s t ructure  (a )  with 10 reflexions, (b)  with 30 reflexions, (c) with 
90 reflexions. 
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able to evaluate a Fourier transform in a fraction of 
a second, it is possible that reciprocal-space-based 
direct methods may be completely replaced by real- 
space density-modification methods in the next 
decade or so. However, with the current availability 
of computing facilities in the crystallographic com- 
munity traditional direct methods still have much to 
offer. 

We thank Mrs E. Dodson for supplying the com- 
puter programs. We are also grateful to Dr C. Tate 
for helpful discussions. Thanks are also due to the 
Science and Engineering Research Council for the 
support of our projects. One of us (MS) thanks the 
Rigaku Corporation of Japan for the award of a 
research studentship. 

Following the method for deriving the Sayre- 
equation tangent formula (Debaerdemaker, Tate & 
Woolfson, 1985), we require, for all x, 

aR/O~o(x) =0. 

Application of this condition to the R factor gives a 
new tangent formula which should be effective for 
structures containing heavy atoms. The form of this 
modified Sayre-equation tangent formula is 

tan q~(x) = [A lm (t) - B lm (qal) - C Im (qa2) 

where 

A P P E N D I X  t = 
Modified Sayre-equation tangent formula (MSETF)  

If we define structure factors corresponding to the qal = 
square and cube of the E-map density, compensated 
for the fall-off with the shape factors, by 

G'(h)=[1/g(h)]~ E ( k ) E ( h -  k) qa2= 
k 

H'(h)=[1/h(h)]~E E(k)E(l)E(h-k-l), (A-I) qi= 
k I 

the R factor for the MSE is then given by 

R = En IE(h) -  E(h)ca'12/~ ]E(h)]2 s = 

= Zh IE(h)-1 Pa'(h)- QH'(h)}12/~h IE(h)[% 
(A-2) A = 

where P and Q are given by 

P=P Zh E(h)*G'(h)/~ IG'(h)l% 

Q=q Y'h E ( h ) * H ' ( h ) / ~  IH'(h)l% 

(ZL)Z2H --(Z 3) 0-14/2 
P - ((zbz,_, - ( z b ) z .  ~'d ~ 

where 

and 

- D Im (qi)+E Im (s)]  

x [A Re ( t ) -  B Re ( q a l ) -  C Re (qa2) 

- D Re (qi)+ E Re (s)]  -~, 

( Z L ) Z  H - ( Z ~ )  0 6 1 / 2  

q-((Z~)Z_(Z3))Z" o.21/2. (A-3) 

Applying P and Q to (A-2), we obtain 

R=~IE(h)-p[~E(k)*G'(k)/~IG'(k)I2]G'(h) 

+ q [ ~  E(k)*H'(k)/~lH'(k'12]H'(h)l 2 

x I E ( h ) l  = . (A-4) 

[1/g(x) + 1/g(h) + l/g(x-h)]E(h)E(x-h) 
h 

~ [1/h(x) + 1/h(k) + 1 / h ( x - h - k ) ]  
h k 

×E(h)E(k)E(x-h-k) 
E(x-h)[1/g(h)2]~ E ( k ) E ( h -  k) 

h k 

E (x - h)[ 1/g(h) h (h)] 

x E ~, E(k)E(l)E(h-k-l) 
k I 

Z [lib(h)2] Y E(k)E(x-h-k) 
h k 

x Z Z E(l)E(m)E(h-l-m) 
I m 

p ( p - 2 )  Z E(h)*G'(h) E IH'(k)l 2 
h k 

-Pq E E ( h ) * H ' ( h ) E  G'(k)*H'(k)  
h k 

(A-5) 

B=pq~ E(h)*G'(h)~ G'(k)*H'(k) 
h k 

-q(q+ 2) Y~ E(h)*H'(h) ~ Ia'(k)l 2 
h k 

C=2p{~E(h)*G'(h)/~IG'(h" 2} 

x {(p-2)Zk E(k)*G'(k)Z [g'(l)l 2 

- 2 q  ~k E(k)*H'(k) Z, G'(I)*H'(i)} 

D=5pq ~ E(h)*G'(h) ~ G'(k)*H'(k) 
h It 

E = a q { ~  E(h,*G'(h,/~lG'(h,I 2} 

× {2p ~ E(k)*G'(k) ~ G'(I)*H'(I) 

- ( q - 2 )  ~ E(k)*H'(k) ~ Ia'0)12}. 
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Abstract 

This paper  describes two methods which break the 
ambigui ty  associated with phase determinat ion from 
one-wavelength anomalous-scat ter ing data when the 
positions of  the anomalous  scatterers are known. In 
the Wilson-distr ibut ion method the magni tudes  of the 
contr ibut ions of the light atoms are found for each 
of the alternative phases and the phases are then given 
weights according to the usual Wilson probabi l i ty  
distr ibution for the magnitudes.  In the MPS method 
the two possible magni tudes  of the contr ibut ions of 
the light atoms to the scattering are compared  with 
a theoretical value based on the observed structure 
magni tudes  and the Fourier  coefficient of  the I P~I 
function [Hao & Wooifson (1989). Acta Cryst. A45, 
794-797]. Once again this leads to a weight for each 
alternative phase. A best-estimate phase based on the 
two weights is compared  with true phases for two 
known proteins consisting of 36 and 96 amino  acid 
residues respectively. It is concluded that the quality 
of the phase estimates is s imilar  to that obtained by 
other previously publ i shed  procedures and that the 
results are much more l imited by the magni tude  of 
the anomalous  contr ibut ion and the data quali ty than 
by the actual method used. The methods were then 
appl ied to the smaller  protein structure using calcu- 
lated data both with and without added errors. It is 
concluded that this common  procedure for the testing 
of methods must be done with great care, otherwise 
unduly optimistic conclusions may be drawn. 

Introduction 

We consider  a structure in which there are m 
anomalous  scatterers, whose positions are known, 
and n non-anomalous  scatterers in the unit cell. From 
one-wavelength anomalous-scat ter ing (OAS) data, 
with known positions for the anomalous  scatterers, 

there will be two possibil i t ies for the phase,  ~ ' +  A~, 
as shown in Fig. 1. The various quanti t ies shown in 
Fig. 1 are related by 

IFI ~ = -)(I F+I ~ + I F - I b -  I F" l  ~ (1)  

and 

cos(a¢)=(IF~l~-IF-12)/21FIIF"l. (2) 
There are various ways in which the ambigui ty  may 

be resolved or c i rcumvented (see, for example,  Okaya,  
Saito & Pepinsky,  1955; Kartha,  1961; Blow & 
Rossmann,  1961; Fan, Han,  Qian & Yao, 1984). Other 
work, which is related to our approach  but different 
in substance,  has been done by Wang (1985), who 
has not so much resolved the ambigui ty  as solved 
structures despite the ambigui ty  by his solvent-flat- 
tening technique,  and by Karle (1985) who has taken 

/ / i  / ' /  
I~1~ / IF~ ,', 

IFI / ,/ 
"~ . . -~ . . - : -  ..... IF1 / / !'~FI ~ "  .. .... - - - . ~  / !' 

IFi 
real 
ax is  

Fig. 1. The following contributions to the scattering are shown: 
IF+l, IF-I the observed structure amplitudes of a Friedel pair; 
I F"I the imaginary part of the contribution of the anomalous 
scatterers; I FI the real part of the scattering from all scatterers; 
IF, I the total real part of scattering from the anomalous scat- 
terers; IF,,I, IFt21 the possible contributions of the light atoms. 
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